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Abstract

A numerical scheme is proposed to obtain the individual stress intensity factors in an axisymmetric crack and in a
three-dimensional mixed-mode crack. The procedures presented here are based on the path independence of J and M
integrals and mutual or two-state conservation integrals, which involve two elastic fields. A useful method to de-
compose the stress intensity factors along curved three-dimensional cracks under mixed mode is derived by using
appropriate auxiliary fields for the plane problems. The choice of the auxiliary fields available is critical to success of the
present scheme, and in this study it is made of not only the asymptotic plane-strain solution, which requires some
remedy in application of the two-state integral due to the lack of equilibrium and compatibility, but a numerical so-
Iution with a given stress intensity as well. Some numerical examples of penny-shaped cracks are presented to inves-
tigate the applicability and effectiveness of the method for problems of axisymmetric and three-dimensional
cracks. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Mode decomposition; Stress intensity factors; J integral; Mutual integral; Auxiliary field; Three-dimensional crack; Penny-
shaped crack

1. Introduction

Conservation integrals in elasticity have been widely applied to the fracture mechanics, among which the
J integral is the most popular one. The J integral is path independent and has been shown to be identical to
Irwin’s energy release rate associated with the collinear extension of a crack in an elastic solid (Rice, 1968).
It has been related to the crack tip stress intensity factors in both linear and nonlinear elastic solids sub-
jected to infinitesimal deformations (Hutchinson, 1968). It is necessary to evaluate the individual stress
intensity factors separately for mixed-mode crack problems in order to investigate the crack growth and the
crack propagation. However, the evaluation of the J integral alone does not determine the individual stress
intensity factors, Kj, Ky and Kjp; separately.
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Many works on mixed-mode crack problems using the path-independent integrals have been reported.
Bui (1983) developed a technique using the J integral associated with Mode I and Mode 11, in which the
symmetric and antisymmetric parts of the planar displacement, strain and stress fields about the crack plane
are separated. Stern et al. (1976) employed another conservation integral based on Betti’s reciprocal work
theorem with known auxiliary fields. Later the method was extended for the straight interfacial cracks by
Hong and Stern (1978). For planar cracks, Yau et al. (1980), Wang and Yau (1981) and Shih and Asaro
(1988) utilized a new class of conservation integral known as mutual integral or two-state conservation
integral, proposed by Eshelby (1956) and later by Chen and Shield (1977): Nakamura and Parks (1989) and
Nakamura (1991) employed the same approach to determine the mixed-mode stress intensity factors for
three-dimensional interface crack problems. Nikishkov and Atluri (1987a) developed a domain integral
approach to calculate mixed-mode stress intensity factors for planar three-dimensional cracks. Nahta and
Moran (1993) and Gosz et al. (1998) used asymptotic auxiliary fields for the plane problems to decompose
the stress intensity factors in mixed-mode cracks, and proposed a method to evaluate the divergence term in
the two-state integral. Choi and Earmme (1992) employed the two-state L integral to evaluate the stress
intensity factors in circular arc-shaped interfacial crack. Recently Im and Kim (2000) showed that the two-
state M integral is applicable for computing the intensity of the singular near-tip field for a generic isotropic
composite wedge including planar cracks. The main interest of fracture mechanics is shifting from two- to
three-dimensional crack problems and particularly it becomes increasingly important to study three-
dimensional mixed-mode crack problems for the crack growth and propagation prediction.

This study presents a method to obtain the individual stress intensity factors for axisymmetric and three-
dimensional cracks in mixed mode. The method is based on the path independence of J and M and two-
state J integral, which involves two independent elastic fields. The path independence of these conservation
integrals enables one to obtain each stress intensity factor from the displacements and stresses remote from
the crack tip. In this paper, we present a simple method to evaluate the two-state integral with asymptotic
auxiliary fields for the plane problems. In particular, the divergence term in the two-state integral, which
arises due to the lack of equilibrium and compatibility of asymptotic auxiliary fields, is reduced to a sim-
ple form, with the aid of the equilibrium equation for the plane problems, by imposing displacements of
asymptotic solutions on the nodes of finite elements. Numerical auxiliary fields, finite element solutions for
penny-shaped crack problems under pure Mode I and Mode III, are used to obtain reference stress intensity
factors in three-dimensional mixed-mode cracks. The purpose of this study is to show the validity of the
numerical auxiliary fields and the effectiveness of the present method to calculate the divergence term in the
two-state integral for mode decomposition utilizing the auxiliary field of the plane-strain asymptotic so-
lution. In Section 2 the basic formulation for the method is described and the solution procedure is es-
tablished. The implementation of the scheme is explained in Section 3, and numerical examples are carried
out in Section 4.

2. Formulation of the problems

2.1. Axisymmetric formulation

In three-dimensional infinitesimal deformations of homogeneous isotropic bodies, M integral is defined
as (Knowles and Sternberg, 1972)

1
M:/ (VVx,-n,- — T,uuszT,u,>dA (l: 1,2,3), (1)
A

where W is the strain energy density, u; is the displacement, #; is the unit outward normal vector, 7; is the
traction vector, and A indicates a surface.
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Consider crack problems in an elastic, homogeneous, isotropic axisymmetric solid under axisymmetric
loading conditions. As a result of its axisymmetry, Eq. (1) can then be rewritten as (Kuo, 1987)

M= 27'[/ (VV)C;JIQ( — Tau%/;x/; —;Txua>x1 dS, (2)
C

where the subscripts o and f§ indicate the components in the r—z or the x;—x; plane (see Fig. 1), and C
encloses the crack tip (it may be taken to be C; or C, in Fig. 1). Note that x; and x, are used for r and z
whenever it is convenient to do so. Physically, Eq. (2) implies that M integral is a driving force for a crack to
expand uniformly (Budiansky and Rice, 1973).

Straightforward argument reveals that the M integral has the following relationships for the axisym-
metric cracks (Kuo, 1987) in the absence of Mode III or torsion.

J=Ji+Ju 3)
with
My My
Jp = 57 = ak? and Jy = T = ak?,

where o = (1 —v?)/E (E: Young’s modulus; v: Poisson’s ratio), and r is the r or the x; coordinate of the
crack tip, that is, the shortest distance from the z axis to the crack tip.

It should be noted here that the J integral in Eq. (3) alone does not provide adequate information for
determining the individual stress intensity factors K; and Kj; in a mixed-mode crack problem. Following
Chen and Shield (1977), we consider two independent elastic states of a penny-shaped crack: the field of the
target problem denoted by superscript “(1)”” and an auxiliary field denoted by “(2)”. Let the elastic state
from the superposition of the two elastic fields be denoted by superscript ““(0)”’. Then the J integral for the
resulting state has the following form:

JO — jO _|_J(2) _|_J(1«2) (4)

in which J, J@ and J? are given as

Z, X5

Fig. 1. Simply connected region 4; enclosed by the contour C on the cross-section of an axisymmetric crack.
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1
J@ = ] /F,fl“)nmxl ds (a=1,2), (5a)
c JC

1

Jud — =
G

/ F;,(ll’2>n,,,x1 ds (5b)
c
with

F”(l”> = W95, — ag,f)ugyxiékm — %a,ii) u,(:')é,,m,

1) (2 2) (1 1 2 2 1
FI2 = 023, — (o) + 20 Vi — 400 + 0L ),
where §;; is the Kronecker delta and W12 is the two-state strain energy density of the elastic body, defined
by
1) (2 2) (1
W(lyz) = Ci'k/ul(',j)u](c,l) = C,--k,ugﬂj)u,((‘l). (6)

In Egs. (5a) and (5b), ag}) and ugl) can be obtained from analytic or numerical solution to the target
problem along a properly selected integration path C, while aff) and uﬁz) are given from the auxiliary field,
which is chosen in a convenient manner.

Recalling the relationships of Eq. (3), one finds that the J integral for the state ““(0)” is expressed as
JO = a{ I +K§2>r + [k + Kl(f)r}, (7)
which leads to
JO =0 150 20 (KK 4+ KK (8)
Comparison between Egs. (4) and (8) reveals that
709 = 22 (KK + KK, )

The J integral shown in Egs. (5b) and (9) deals with the interaction term only and is to be used for
solving mixed-mode penny-shaped crack problems in a linear elastic solid. It should be noted here that the
JU?) integral is related to the details of the stresses and deformation at the crack tip (i.e., K; and Ky in Eq.
(9)). Due to the path independence of this integral, however, it may be evaluated in the region away from
the crack tip (i.e., the integral in Eq. (5b)), where such a calculation can be carried out with greater accuracy
and convenience than near the crack tip.

Eq. (5b) together with Eq. (9) provides, in fact, sufficient information for determining the stress intensity
factors for a mixed-mode fracture problem of a penny-shaped crack, when a proper known auxiliary field is
introduced. Let the superscript “(2a)” indicate the solution for an auxiliary elastic field, wherein the body
under consideration is in the state of Mode I deformation only, i.e.,

K £0 and K} =0. (10)
Eq. (9) can be simplified as
JU20 = 24k VK, (11)

For the target problem field and for the auxiliary field of Mode I, we have, respectively:
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g — a{ [Kl(l)]z N {K1(11>]2}7 Ja) _ “{KI(M}Z. (12)

Eqgs. (11) and (12) leads to the expressions of the individual stress intensity factors for the target field in
terms of the conservation integrals, J), J?% and J(129):

J(1.2a) \/T [J(1207)2
(1) (1)
K= d Ky’ ==£4/\[JD - . 13
Ry o 4J () (13)

It should be noted that the integrals J"), J?¥ and J(?9 have to be calculated accurately for proper
evaluation of KI(1> and KI<II). For a given crack geometry and loading condition, this can be achieved by
integrating Eqs. (5a) and (5b) along a properly selected band in the far field utilizing the domain integral
expression (Li et al., 1985; Nikishkov and Atluri, 1987b).

2.2. Three-dimensional formulation

In three-dimensional infinitesimal deformation of homogeneous isotropic elastic bodies the energetic
force J; integral is given as (Eshelby, 1956; Knowles and Sternberg, 1972)

Ji :/(W”k — ) d4 :/ij”jdAa (14)
4 A

where A indicates a surface surrounding the crack front as in Fig. 2, and it includes the crack surfaces as
well as the remaining boundary so that 4 = S,; the integrand Hj; is the energy momentum tensor, given as
Wy — o;u;,. Note that the pointwise value of J along the crack front is required for mode decomposition.
Let J(s) indicate the energy release rate associated with the self-similar crack growth on the crack front. As
the cylindrical surface 4 shrinks to the crack front line (Moran and Shih, 1987), J(s) is given as

—lim [o IHm; d4
ch Zk Vi ds

where “I" ”” is the circular contour on the r—z plane that represents the cross-section of the shrinking surface
S (see Fig. 2¢); ““s ”” denotes the coordinate along the crack front of a three-dimensional crack; [, which is
short for /;(s), indicates the component of crack advance vector (see Fig. 2b); v;, which is short for v.(s),
represents an outward unit vector normal to crack front on the crack plane and m; is the normal to I’
pointing towards the crack front; i.e., m; = —n; on I" as shown in Fig. 2a. Furthermore, L. is a small interval
on the line of the crack front for virtual crack extension.

As the crack tip is approached in a three-dimensional crack, asymptotically the plane-strain or the plane-
stress state prevails (Rice, 1968) and therefore we can use the following relationships for the three-
dimensional mixed-mode crack:

J =Ji +Ju +Jm (16)

J(s) =

(15)

with

o
JI = OCKIZ, JH = OCKIZI, JIII = 1—_\}K12”

As in the axisymmetric case, the J integral in Eqgs. (15) and (16) alone does not provide adequate in-
formation for determining the individual stress intensity factors Kj, Ky and Ky in a mixed-mode crack
problem. Other information may be obtained from the two-state J integral (Chen and Shield, 1977).
Consider two independent elastic states of a penny-shaped crack in an elastic medium, each denoted by
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I(s)

()

Fig. 2. (a) Conventions at curvilinear crack front (b) virtual crack advance between s, and s, (c) inner tubular surface S, and outer
arbitrary surface S,.

superscript “(1)”” and “(2)”’. Let the equilibrium state from the superposition of the two states be denoted
by superscript “(0)”. Then the J integral for the superimposed state is obtained in the following form:

JO =g 4@ 4 g2 (17)
in which J® (k = 1,2) is defined by Eq. (15), and J!? is given as
: (1.2)

JUD = — .
jLC Levids

(18)

with
12 ) (2 2) (1
H/i, ) = W(l‘z)ékj — (61(])”5,) + alyu; )).

From Eq. (16), one finds that the J integral for the elastic state ““(0)”” may be written as
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1
JO = g0 4 @ 4 2y <K1(1>K1<2) + KI(II)KI(IZ) + 11— VKI(III)Kl(Izl)) (19)
and comparison to Eq. (17) yields
1
1 2 1 2 1 2
JU =2q (KI( )KI< : KI(I)KI(I) 1 VKI(II)KI(II>>' (20)

Eq. (18) together with Eq. (20) provides, in fact, sufficient information for determining the individual stress
intensity factors for a mixed-mode crack when two known auxiliary solutions are introduced. Let two
auxiliary solutions be denoted by a superscript “(2a)” and ““(256)”. The auxiliary state “(2a)” is chosen to be
a pure Mode I state, and ““(2b)” to be a pure Mode III. Then J?% and J®* are written as

2 2)]? 2 1 )12
Jl( ' = O‘[KI( )} ) J1<11> =%, [KI(II )] ‘ (21)

Together with Egs. (16) and (20), these lead to the following expression for K", KI(II) and KI(III) in terms of
J(l)’ J(I,Za)’ J(Za)’ J(1.2b) and J(Zb)

2
(1) J(1.2q) (1) [J‘(LZQ)}
K'=——— and J’ ' =-—73+, (22)
2V/0JCa) 47
2
(1,2b)
E g0 [Jm }
Kl(lll> =4/ T I and Jl<lll) = (23)
2 JI(IZIb> 4y
1,2a 2 1,26 2
K(1> =+ 1 J(l) |:JI( ):| |:JI(H ):| d J(l) _ K(U 2 24
T Ve Y Y R R 4
1 111

Note that the path-independent integrals on the right-hand side of the above expressions may be cal-
culated accurately, transforming Eq. (18) into the domain integral expression. The values of J(s) and the
two-state integral along a three-dimensional crack front are given by the limiting contour integral as seen in
Egs. (15) and (18). Following Moran and Shih (1987), we can show that the domain integral representation,
which is more suitable for numerical computation, is obtained as

J(s) = _ fV (ijqu "‘H/chQk) dr
Iy L(s)ve(s) ds ’

where g is the weight function, ¥ is the domain bounded by S, and S, (see Fig. 2c), and L. is the crack front
line from s, to s, (see Fig. 2b). It should be noted that S; must shrink onto the crack tip in order to evaluate
the pointwise value of J along the crack front. The weight function ¢; is smooth enough for the indicated
operations to be carried out and is defined as follows

(25)

I on S,
G=10 on S,, (26)
arbitrary otherwise.

The divergence term Hj,; in Eq. (25) vanishes if the auxiliary fields satisfy the equilibrium and compatibility
in the absence of body force, thermal stress, and inertia.
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The success of the present scheme crucially relies upon the availability of the auxiliary solutions. For
two-dimensional crack problems, we see that the three modes of the K-fields, which have inverse square
root singularity, are valid over the entire domain, and therefore they naturally come up as a set of three
independent auxiliary solutions. However, there exist no simple auxiliary solutions available for three-
dimensional cracks with a curved line of crack front or tip. In spite of such a limitation, however, the present
scheme is applicable for three-dimensional cracks once we have any auxiliary solution valid only on the
local region where the domain integral is carried out. For such auxiliary solutions, we may therefore choose
the solutions for an axisymmetric penny-shaped crack with the same radius as the radius of curvature of the
local crack front line in the target problem of a three-dimensional crack for which we want to decompose
the fracture modes. The solution for a penny-shaped crack in an infinite body is given in the integral form
(Hartranft and Sih, 1973; Kassir and Sih, 1974) and so not convenient for numerical computation.

In order to obtain auxiliary fields, we take finite element solutions to penny-shaped crack problems
under pure Mode I and Mode III. We demonstrate in the next section the validity of the numerical auxiliary
fields through some numerical examples. Another choice of auxiliary field is the use of the plane-strain
asymptotic solution. Away from a curved crack front the plane-strain asymptotic solution fails to meet the
equilibrium and the compatibility, and so arises nonzero divergence term Hj;; in Eq. (25) for a curved three-
dimensional crack. In general, this divergence term should be included in the calculation of the two-state
integral to decompose the mixed modes in a curved three-dimensional crack, because the auxiliary fields in
the form of the asymptotic plane-strain solution or K-field do not satisfy the equilibrium and compatibility
in three-dimensional domain with curved cracks. In other words, the three-dimensional effect should be
considered with the divergence term retained in the two-state integral. In particular, it is crucial to in-
corporate the divergence term in the two-state integral for a highly curved crack. The divergence term in the
two-state integral can be written as

H12 _ 1.0 m, 2 @ (1) (27)

kij = 9ij Gijk — Oij Uigy — Oij Uik

in which superscript (2) indicates an auxiliary field. The higher order gradients in Eq. (27) give rise to the
difficulty in evaluating the divergence term. Nahta and Moran (1993) and Gosz et al. (1998) presented a
method to evaluate the divergence term by introducing curvilinear coordinates in the expression of de-
formation gradients. In this paper, we propose a simple method to impose the plane-strain asymptotic
solutions, as auxiliary fields, on three-dimensional domain. The displacements of two-dimensional as-
ymptotic solution are imposed on the nodes of three-dimensional finite element model, and then the first
and second terms in Eq. (27) cancel each other because displacement field satisfies compatibility condition;
ie., 05} >8sz3{ = al(:} )ufz,()j In the present method, the stresses of the asymptotic solutions are used in the ex-
pression of the two-state integral, and the strains are evaluated at the integration points by using finite
element interpolation from the nodal values of the two-dimensional asymptotic solution. The equilibrium
equation in the absent of body force in the cylindrical coordinates shown in Fig. 3 can be reduced to the

following forms:

062 136?062 | @ —6ld 6@ _6@
I’-direction [ U 4+ — r0 + rz + s 00 — 00 (283)
or p 00 0z P 0 ’
86(2) 1 ao.(z) 60<2) O,(2) 0_(2)
f-direction o, — 200 0z 290 _ 2% 28b
[ or + p 00 * Oz + 0 o’ (28b)
06®@ 106y 06| @ o2
-direction o 2t 2z Pz _ Y 2%¢
: [6r+p69+62 T (28¢)
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z

crack front

Fig. 3. Local cylindrical coordinates on the crack front; p is the projection point of p on the plane parallel to the crack surface.

where p is the radius on the plane parallel to the crack surface as shown in Fig. 3. In this figure, the line pp is
perpendicular to the plane of crack surface, and the cylindrical coordinates are defined at the point ¢ lying
on the crack front. The expressions inside bracket in Egs. (28a)—(28c) indicate the equilibrium for the
asymptotic solution in two-dimensional domain. Consequently, the divergence term in the present method
can be written as

@ _ -2
e -e e -e e -e o) =04 )/p
12 2) (1
HYY = —oful) ==[ul) W) W]|ee e e 202/ (29)
€3-€ €3-€ €3-€ aﬁf)/p

where the basis vectors (e,ey,e;) and (e, ey, €,) in (xy,x5,x3) and (r,6,z) coordinates, respectively, are
introduced for coordinate transformation. For example, we have the following expression for the diver-
gence term in the two-state integral when the crack surface lies in the x;—x, plane:
2 _ ;2 25 @ _ 52 253 2)
g 0 ay . a' v 15 g
HY = _ <” 0 cos — = sinf |ul) — | Z—=% sin0 + L cos0 |u) — = u
p ’ p p fop Y

kj.j P 127 (30)

where 0 is the angle between x; axis and r axis in the x;—x; plane. It should be emphasized that the ex-

pression (29) or (30) is easily calculated from the stresses (a,., 649, 6,0, 0,..) Of the plane-strain asymptotic
field.

3. Finite element implementation
3.1. Axisymmetric finite element implementation
In the foregoing we have established the mode decomposition method for axisymmetric and three-

dimensional cracks under mixed mode loading. Accuracy of the method described in Section 2 depends on
how accurately the conservation integrals are evaluated. The integration path may be chosen along the



6414 Y.J. Kim et al. | International Journal of Solids and Structures 38 (2001) 6405-6426

element boundaries or through the Gaussian points. Li et al. (1985), Nikishkov and Atluri (1987b), and
Shih and Asaro (1988) have introduced appropriate weighting functions to obtain area/domain represen-
tation of the J integral. They concluded that a very accurate value of J is obtained using the domain
representation and the value of J so obtained is insensitive to the types of weighting function. In an
analogous manner it is possible to recast the line integral J of Egs. (5a) and (5b) into the area integral:

| 3
J=— | Fx~L da, (31)

2
r2 Jy Ox,p,

where 4 is an area enclosed by C; and C, as shown in Fig. 1 and the function £}, is given in Eqgs. (5a) and
(5b). Moreover, g is a weight function which has the value of zero on the contour C, and one on the inner
contour C;. Use is made of the equilibrium equation and divergence theorem in deriving the expression

31).

3.2. Three-dimensional finite element implementation

In a three-dimensional analysis the virtual crack extension has to be applied to a single node point on the
crack front for evaluating the local value of the energy release rate. For the 20-node three-dimensional
isoparametric element, a new crack front is defined by the quadratic interpolation function as shown in Fig.
4. The volume V is identified with the collection of elements which contain the line L.. Thus, in the finite
element framework, for considering the increase in cracked area due to the shift of a given particular node
M we take L. to be the line connecting the nodes M — 1, M and M + 1 for mid nodes and the nodes M — 2,
M —1, M, M+ 1 and M + 2 for corner nodes as shown in Fig. 4. Then, the weight function is therefore
taken as follows (Li et al., 1985)

20

qi = ZN/(QI() (32)

k=1

where N* is the triquadratic shape function and QF is the nodal values for the kth node. Note that OF = 0 if
the kth node is on S,,. For nodes inside ¥/, O is given by interpolation between the nodal values on L. and S,
(see Fig. 2).

virtually extended crack area

crack front

Fig. 4. Local advance of the crack front for 20-noded three-dimensional element.



Y.J. Kim et al. | International Journal of Solids and Structures 38 (2001) 64056426 6415

4. Numerical examples and discussion

The procedures just outlined have been programmed for studying axisymmetric penny-shaped cracks
and three-dimensional cracks under mixed mode loading in isotropic solids. The numerical calculations for
mixed-mode crack problems are carried out with the finite element code ABAQUs (Hibbitt et al., 1997). This
code supplies the required displacements and stresses at the Gaussian points to a separate program de-
veloped for evaluating the J integral and the two-state integrals. For the convenience of the notation, we
use x, y, and z in the numerical experiments instead of x|, x, and x; in the previous sections, respectively.

4.1. An axisymmetric sub-interface penny-shaped crack

To illustrate the decomposition method for axisymmetric mixed-mode cracks, an axisymmetric sub-
interface penny-shaped crack is selected as an example problem. The problem of a straight crack paralleling
an interface between two dissimilar materials has attracted a substantial amount of attention due to its
potential application in various kinds of bonding problems (Hutchinson et al., 1987; Yang and Kim, 1993).

In this paper the problem of a penny-shaped crack paralleling an interface between two dissimilar
materials under tension is investigated. The loading condition and the crack geometry under investigation
are shown in Fig. 5a (o, = 6.895 x 10° N/m?). The cylinder has a radius » = 0.0572 m; total length of
2L = 0.127 m. The penny-shaped crack has a radius a = 0.0254 m (a/b = 0.444); a distance from the in-
terface to the penny-shaped crack is # = 0.00635 m. Each material is taken to be isotropic and elastic. The
upper part of the cylinder has elastic properties of E; = 2.069 x 10° N/m? and v; = 0.3. The lower part
containing a penny-shaped crack has elastic properties of E, = 2.069 x 10'! N/m? and v, = 0.3.

To examine the accuracy and the convergence of the results, a typical finite element mesh for a penny-
shaped crack paralleling an interface between two dissimilar materials is selected as shown in Fig. 5b
wherein a total of 298 eight-noded isoparametric-axisymmetric elements are used. To find a Mode I auxi-
liary field, we consider a body of the same geometry as in the target problem, but composed of the lower
material (E = E, and v = ;) only. Because the body is made of a homogeneous material, it will undergo a
pure Mode I deformation under a remote tension ¢; = 6.895 x 10° N/m?. Note that the foregoing mode

*z

L
E, v .
. / [ >Interface <—
| —==m T ~e N I 2
¥=(/ h ~Eg ——r>
S _— e I
L,/? Penny shaped crack <
E,v, L
N B

v
o, a
% b

(a) (b)

Fig. 5. (a) Axisymmetric sub-interface penny-shaped crack (b) finite element model for axisymmetric sub-interface penny-shaped crack.
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decomposition scheme is applicable only when an auxiliary field is found for the target problem, i.e. the
geometry and the material properties should coincide between the auxiliary field and the target problem.
Hence we restrict our attention to the lower part of the target field, which has the same geometry and
properties as the auxiliary field. This is equivalent to removing the upper part and applying the external
traction, which is acting upon the lower material by the upper one, so that the mode decomposition scheme
is now applied on the lower part of the body. It is under a mixed mode in the target problem while it is
under pure Mode I in the auxiliary field. The first integration domain is comprised of 16 elements adjoining
the crack tip; the second domain has the next 16 elements adjoining the first integration domain. In this
manner, the integration domains 3 through 9 are continued. The detailed element arrangement around the
crack tip and the domains selected for integration are given in Fig. 6 wherein the paths of the integration
domains 3 and 7 are indicated. The calculations for J integrals are carried out according to the domain
integral (31) in a separate post-processing program, and the two-state integrals are calculated in the same
manner.

The path independence of J and two-state integral has been checked numerically by using different
domains of integration. The values of J and two-state integral as calculated by the discrete domain formula
of the type of Eq. (31) for the various domains are listed in Table 1. We observe that the variation in the
computed J and two-state integral from one domain to another is within 1% excluding the near tip domain
of the first domain. Effects of £, /E, are examined by taking various material constant £ or E;/E, for the
given lower part containing a penny-shaped crack and v; = v, = 0.3. A plot of the variation of the com-
puted K and Kj; with the increase of E, /E, is shown in Fig. 7. This shows well the mixed mode of the sub-
interface penny-shaped crack even under uniaxial tension loading, because K; and Ky are of the same order
of magnitude. It is noticed that K is always higher than Kj; in the entire range of E;/E, examined. In the
case of E|/E, < 1, K; and Ky increase as E|/E, decreases. K; and Ky remain relatively unchanged with
E\/E, greater than 30. Note that Ky disappears for E;/E, = 1. This K is found to be K; = 1.20894+/a, and

interface
A\ /
\ /
g LA
Penny shaped crack
| N
/ \
/ \

Fig. 6. The detailed element arrangement around the crack tip and the paths of the integration domains.
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Table 1
Axisymmetric analysis result for a sub-interface penny-shaped crack
Domain JU (Pam) J12 (Pam) J@ (Pam) K; (kPam!/?) Ky (kPam'/?)
1 4.0466E — 01 3.2799E - 01 7.6300E — 02 2.8305E + 02 1.0892E + 02
2 4.1197E — 01 3.3347E — 01 7.7558E — 02 2.8544E + 02 1.1032E + 02
3 4.1235E — 01 3.3307E — 01 7.7640E — 02 2.8496E + 02 1.1194E + 02
4 4.1240E — 01 3.3312E - 01 7.7645E — 02 2.8499E + 02 1.1191E + 02
5 4.1242E — 01 3.3314E - 01 7.7645E — 02 2.8501E + 02 1.1189E + 02
6 4.1244E — 01 3.3316E — 01 7.7643E — 02 2.8502E + 02 1.1188E + 02
7 4.1246E — 01 3.3316E — 01 7.7643E — 02 2.8502E + 02 1.1188E + 02
8 4.1246E — 01 3.3316E — 01 7.7643E — 02 2.8502E + 02 1.1189E + 02
9 4.1244E — 01 3.3316E — 01 7.7642E — 02 2.8502E + 02 1.1187E + 02
Average excluding the first domain
4.1237E — 01 3.3317E - 01 7.7642E — 02 2.8496E + 02 1.1170E + 02
3501
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Fig. 7. The variation of Kj and Ky with the increase of E|/E>(v; = v = 0.3).

this is well compared with Kj =1.1903¢,1/a for an axisymmetric crack in an infinite homogeneous body
from Benthem and Koiter (1973).

4.2. Three-dimensional penny-shaped crack under nonaxisymmetric loading

We first compare the results from the decomposition method for three-dimensional mixed-mode cracks
with those for the axisymmetric mixed mode crack in Section 4.1. We consider the full three-dimensional
model consisting of a 360° revolution of the same axisymmetric model as in the previous section about the z
axis. The model is discretized with 10 elements along the circumference in an 180° segment. The typical
finite element mesh for the full three-dimensional model is similar to that illustrated in Fig. 8. A total of
5740 20-noded isoparametric elements are used. The elements adjoining the crack front are set to possess
the inverse square root singularity at the corner nodes on the crack tip by choosing the mid nodes to be

located on the quarter point.
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Fig. 8. (a) Three-dimensional finite element model for the penny-shaped crack under nonaxisymmetric loading (b) the definition of g;
along the penny-shaped crack.

We briefly discuss the setting up of the integration domains for calculating J and two-state integrals
associated with a unit virtual advance of a finite crack front segment (e.g. see Fig. 8). The first integration
domain is comprised of a collection of elements adjoining the crack front: the domain consists of two layers
of elements in the circumferential direction, amounting to a total of 32 elements, for a unit virtual advance
of a corner node, while it contains only one layer of elements or a total of 16 elements if a unit virtual
advance is imposed on a mid node. The second domain is obtained by adding one ring of elements around
the first domain; thus the second domain has a total of 64 elements for a virtual advance of a corner node
and a total of 32 elements for a virtual advance of a mid node. In this manner, the integration domains 3
through 9 are continued.

The loading condition and the crack geometry under investigation are the same as those in the previous
part (E; = 2.069 x 10° N/m?, E, = 2.069 x 10" N/m? and v, = v, = 0.3). As an auxiliary solution, Mode I
loading condition was used for the cylinder of a homogeneous material E; = E, = 2.069 x 10'" N/m?. The
results for three-dimensional mixed-mode crack are shown in Table 2. It is seen from this table that the J
and the two-state integral are path-independent except the first domain. In Table 3, they are compared with
the results from the axisymmetric analysis of the foregoing section. Comparison of the results shows that
the three-dimensional solution is in an excellent agreement with the axisymmetric solution. Particularly, the
path independence in different annular regions containing crack front at its center for domain integrals
indicates the minor effects of boundary. In the three-dimensional solution the J and the two-state integral
for a virtual advance of a corner node differ only slightly from those for a virtual advance of a mid node.

To illustrate the mode separation for three-dimensional mixed-mode cracks, selected are two examples
of a circular cylinder containing a penny-shaped crack and a half-circular cylinder containing a half-penny-
shaped surface crack at its center under nonaxisymmetric loading. The crack geometry and the finite ele-
ment mesh are shown in Fig. 8. The cylinder has a radius » = 0.0508 m; total length of 2L = 0.152 m. The
penny-shaped crack has a radius @ = 0.0254 m (a/b = 0.5). For auxiliary solutions, two different loadings
are chosen; one is a uniform tension, generating a pure Mode I deformation, and the other a torsion, giving
rise to a pure Mode III. To apply nonaxisymmetric loading, the lower end face of the circular cylinder at
z = —L is constrained against motion in the x, y and z, whereas the uniform displacement boundary
condition of u, = 2.54 x 107° m and u. = 7.62 x 10~7 m are applied on the other end face of the circular
cylinder at z = L (Fig. 8).
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Table 2
Three-dimensional analysis results for a sub-interface penny-shaped crack

Domain JU (Pam) J12 (Pam) J? (Pam) K; (kPam!/?) Ku (kPam'/?)
Corner node
1 4.2172E — 01 3.4032E — 01 7.9547E — 02 2.8765E + 02 1.1455E + 02
2 4.1729E — 01 3.3676E — 01 7.8715E — 02 2.8613E + 02 1.1393E + 02
3 4.1624E — 01 3.3592E — 01 7.8521E — 02 2.8578E + 02 1.1379E + 02
4 4.1584E — 01 3.3559E — 01 7.8444E — 02 2.8564E + 02 1.1374E + 02
5 4.1559E — 01 3.3540E — 01 7.8398E — 02 2.8549E + 02 1.1368E + 02
6 4.1542E — 01 3.3526E — 01 7.8369E — 02 2.8549E + 02 1.1368E + 02
7 4.1531E - 01 3.3517E — 01 7.8347E — 02 2.8546E + 02 1.1366E + 02
8 4.1522E — 01 3.3512E — 01 7.8332E — 02 2.8544E + 02 1.1364E + 02
9 4.1514E — 01 3.3506E — 01 7.8321E — 02 2.8542E + 02 1.1359E + 02
Average excluding the first domain

4.1575E — 01 3.3554E — 01 7.8432E — 02 2.8562E + 02 1.1371E + 02
Mid node
1 4.1673E — 01 3.3631E — 01 7.8610E — 02 2.8594E + 02 1.1385E + 02
2 4.1230E — 01 3.3274E — 01 7.7777E — 02 2.8442E + 02 1.1324E + 02
3 4.1125E — 01 3.3189E — 01 7.7580E — 02 2.8407E + 02 1.1311E + 02
4 4.1083E — 01 3.3156E — 01 7.7502E — 02 2.8391E + 02 1.1305E + 02
5 4.1058E — 01 3.3135E — 01 7.7454E — 02 2.8382E + 02 1.1301E + 02
6 4.1042E — 01 3.3123E — 01 7.7425E — 02 2.8377E + 02 1.1299E + 02
7 4.1030E — 01 3.3114E — 01 7.7404E — 02 2.8374E + 02 1.1297E + 02
8 4.1021E — 01 3.3107E — 01 7.7388E — 02 2.8371E + 02 1.1294E + 02
9 4.1013E — 01 3.3104E — 01 7.7377E — 02 2.8369E + 02 1.1290E + 02
Average excluding the first domain

4.1076E — 01 3.3151E — 01 7.7488E — 02 2.8389E + 02 1.1302E + 02

Table 3

Comparison between the axisymmetric analysis result and the three-dimensional analysis results
Analysis JO) (Pam) J12 (Pam) J® (Pam) K, (kPam'/?) Ku (kPam'/?)
Axisymmetric
Average 4.1237E — 01 3.3317E — 01 7.7642E — 02 2.8496E + 02 1.1170E + 02
Three dimensional
Corner node 4.1575E — 01 3.3554E — 01 7.8432E — 02 2.8562E + 02 1.1371E + 02
Mid node 4.1076E — 01 3.3151E - 01 7.7488E — 02 2.8389E + 02 1.1302E + 02
Average 4.1326E — 01 3.3352E — 01 7.7960E — 02 2.8476E + 02 1.1337E + 02
Maximum relative difference from axisymmetric analysis result*

0.8 0.5 1.0 0.4 1.8

* (max |a — b|/a) x 100; a: axisymmetric analysis result; b: three-dimensional analysis result (corner node of mid node result).

The solution procedure starts from the choice of the independent auxiliary fields, which are obtained by
the choice of the two different loadings — uniform tension and torsion. For the auxiliary field of Mode I, the
same finite element model as that for the target field is used under tension with ¢; = 6.895 x 103> N/m?, and
for the auxiliary field of Mode III the same finite element model under torsion with the applied torque of
4.61 kgm. With both of the auxiliary field data and the target field data from ABAQUs output file the
evaluation of the J and two-state integral is carried out for the domain selected as described in this section.
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Fig. 9. The calculated pointwise values of J, JI(U, JI(II) and JI<111> along the crack front of the penny-shaped crack.

A plot of the variation of the computed J, Jl(l), J{) and Jl(lll> along the crack front of the penny-shaped
crack is shown in Fig. 9. In the plot, J(V) at the intersection of the crack boundary with the x axis is slightly
greater than that at the intersection of the crack boundary with the y axis. Jl(l) is constant along the crack
front of the penny-shaped crack as expected. Note that JHI) and JI<III) vary like the curves for the squares of
cosf and sinf along the crack front line of the penny-shaped crack. It is noticed that JI(II) is greatest at the
intersection of the crack boundary with the x axis and vanishes at the intersection of the crack boundary
with the y axis. On the other hand, J1(111> vanishes at the intersection of the crack boundary with the x axis
and is greatest at the intersection of the crack boundary with the y axis. This is consistent with the applied
displacements of u, and u. on the top face of the cylinder.

With these values of J and the two-state integrals, Kj, Kj; and Kjj; are obtained from Egs. (22)-(24). A
plot of the variation of the computed K, Kj; and Ky along the crack front is shown in Fig. 10, in which the
absolute values of the stress intensity factors neglecting sign change are plotted. Note that K is constant
along the crack front line of the penny-shaped crack. As expected, Kj; and Ky vary like curves of cos0 and
sin 0 respectively along the crack front line of the penny-shaped crack. Each of the stress intensity factors
K;, Kj; and Kpp have the variation consistent with that of each of JI(I), JI(II) and JI<III) along the circumferential
direction.

The crack geometry and the finite element mesh for the second example are shown in Fig. 11. The half-
circular cylinder has a radius b = 0.0508 m; total length of 2L = 0.152 m. The half-penny-shaped surface
crack has a radius @ = 0.0254 m (a/b = 0.5), which is of the same size as in the foregoing example. For
auxiliary solutions, the same auxiliary field solutions as in the previous example are used.

To apply nonaxisymmetric loading, the lower end face of the half-circular cylinder at z = —L is con-
strained against motion in x, y and z, whereas the same uniform displacement boundary condition of
u, = 2.54 x 107* m and u. = 7.62 x 10~ m as in the previous example are applied on the other end face of
the half-circular cylinder at z = L.

A plot of the variation of the computed J!), Jl(l), JI(II) and JI(III) along the crack front of the half-penny-
shaped surface crack is shown in Fig. 12. In the plot, J), JI<1> and JI<II) at the surface are greater than those
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Fig. 10. The variation of the computed Kj, Kj; and Ky along the crack front of the penny-shaped crack.
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Fig. 11. Three-dimensional finite element model for half-penny-shaped surface crack under nonaxisymmetric loading.

at the deepest interior point of the crack front, which is consistent with the numerical and experimental
results obtained by Ernst et al. (1994) and Sharobeam and Landes (1995). A plot of the variation of the
computed Kj, Ky and Ky along the crack front is shown in Fig. 13. Note that K} and Kj; at the surface are
greater than those at the deepest interior point of the crack front. As expected, Kj; and Kjyy vary like the
curves of cosf and sin6, respectively along the crack front line of the half-penny-shaped surface crack.

4.3. Mode decomposition using plane-strain asymptotic auxiliary fields

Next, we consider the mode decomposition using auxiliary fields of the asymptotic solutions for the
plane problems. Nahta and Moran (1993) and Gosz et al. (1998) have used the asymptotic auxiliary fields to



6422 Y.J. Kim et al. | International Journal of Solids and Structures 38 (2001) 6405-6426
0.7
) M_ (M, (D, (M
g 0.6 TR,
d i e J|m
g 0.5 —a— m
o "
% 0.4 —v—J,
5 1 T e
@ 0.34 .\.\._\l‘l—l—l———"_’.l./.
g .
-4 .. ]
ﬁ o\.\ . /o/
> 0.2 '\l‘.\.h._._._.__._.————ﬁ——"/. \
= 1~ e
=] \‘\ Yy /‘/
o 0.14 A — v—" v\v\v A
= | " /><:\
O — \A\ A V-
0.0 + —v A, a4 T~v—y
r I T T . . T T T T T
0 30 60 90 120 150 180

Counterclockwise angle from the x axis (degree)

Fig. 12. The calculated pointwise values of J(), JI(I), J,%” and J) along the crack front of the half-penny-shaped surface crack.
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Fig. 13. The variation of the computed K, Kj; and Kjj; along the crack front of the half-penny-shaped surface crack.

determine the stress intensity factors for three-dimensional mixed-mode cracks. In their works, they pre-
sented a method to evaluate the divergence term in the two-state integral with the aid of deformation
gradients using curvilinear coordinates. In this paper, we proposed a simple method to calculate the two-
state integral through imposing displacements of the two-dimensional asymptotic solutions on the nodes in
finite element models. As explained before, the divergence term can be easily evaluated with a simple form
(29) or (30). The penny-shaped crack embedded in a cylinder under mixed mode is adopted to study the
mode decomposition using asymptotic auxiliary fields. We take the same material and geometry as those in
the previous part (E = 2.069 x 10" N/m?, v =0.3, a = 0.0254 m, » = 0.0508 m). The bottom surface is
fixed not to move in any direction, and the displacements u, = 2.54 x 107® m and u. = 7.62 x 107 m are
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applied on the top surface. As a reference solution to verify the effectiveness of the present method, the
mode decomposition using numerical auxiliary solutions under pure Mode I and Mode 111, which is de-
scribed in the previous part, is carried out for two types of finite element models — the first model with seven
rings along the crack front as shown in Fig. 8, and the second model with four rings along the crack front as
shown in Fig. 14. The stress intensity factors versus the angle from the x axis, using numerical auxiliary
fields for these two finite element models, are plotted in Fig. 15. In this figure, we distinguish the sign change
of the stress intensity factors. Since the results for the models with different mesh sizes show a good
agreement with each other, the stress intensity factors obtained using numerical auxiliary fields are taken as
reference solution to compare with the results obtained using the asymptotic auxiliary fields. Moreover, we
have demonstrated the validity of the numerical auxiliary fields in the previous parts. In the comparison,
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Fig. 14. Three-dimensional finite element model with four rings along the crack front.
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Fig. 16. Mode decomposition of the penny-shaped crack under mixed mode in Fig. 14. The stress intensity factor marked by su-
perscript ““a” is the solution of Fig. 15 when numerical solution is used for the auxiliary field. Those indicated by “b”, “c”, and ““d” are
the solutions when the plane strain asymptotic solutions are employed for the auxiliary field: “b”: the divergence term being neglected
in Eq. (25); “c”: obtained by the method from Gosz et al. (1998); “d”: the present method.

the finite element model with four rings is used to examine the mode decomposition employing the as-
ymptotic auxiliary fields in a coarse mesh. Here, the three stress intensity factors Ky, Ky, and Ky are ob-
tained from the two-state integrals with three asymptotic auxiliary fields for Mode I, Mode II, and Mode
II1, respectively. The solution is compared with the reference solution obtained by using the numerical
auxiliary fields. The stress intensity factors calculated in the areas containing annular rings for domain
integral (25) along the crack front show path independence with respect to the integration paths or rings. In
Fig. 16, the average values of the stress intensity factors are plotted in terms of the angle from x axis for
four solutions: the stress intensities marked by “a” is the reference solution of Fig. 15 (four rings), that is,
with the numerical solution being taken for the auxiliary field; those indicated by “b”, “c’’, and “d” are the
solutions with plane strain asymptotic field being taken for the auxiliary solution. Furthermore “b” in-
dicates the solution obtained with the divergence term being neglected, ““c” those obtained by the method of
Gosz et al. (1988), and “d” by the present method. In this figure, the results obtained by neglecting the
divergence term in the two-state integral are a little different from the reference values. One would expect
that the divergence term in the two-state integral cannot be ignored for a highly curved three-dimensional
crack. Note that the present solution is almost indistinguishable from the reference solution while the
solution based upon the method of Gosz et al. (1998) has some deviations in K. Considering the fact that
the present method provides a more straightforward scheme for calculating the divergence term (29) in the
two-state integral, it may be more attractive in view of numerical computation.

5. Concluding remarks

A method of analysis, based on the conservation laws of elasticity and the fundamental relationships in
fracture mechanics, has been proposed for studying axisymmetric mixed-mode cracks and three-dimen-
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sional mixed-mode cracks. The method is based on the path independence of J and two-state integral. Path
independence of J and two-state integrals enables us to compute the individual stress intensity factors
accurately and efficiently from the domain integral expression. The solution procedure has been established
and shown to be computationally efficient and operationally simple: it involves only the choice of ap-
propriate auxiliary solutions in the form of numerical solutions or the plane-strain asymptotic solution, and
the subsequent calculation of J and two-state integrals with the aid of the domain integral expression. The
asymptotic auxiliary fields for the plane-strain problems are successfully implemented to decompose three-
dimensional mixed-mode crack, and a simple method is proposed to evaluate the divergence term in the
two-state integral. The results for the stress intensity factors decomposed by the present method are found
to be in an excellent agreement with the reference solutions obtained with the numerical auxiliary fields.
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